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1 Finitely Generated Modules over PIDs

Recall the following definition and the lemma from last lecture:
Definition. A submodule N of M is pure if whenever ax € N, with z € M, a €
R, then there exists z € N such that az = azx.

Lemma 1 If P = Rxg is a pure cyclic submodule of a finitely generated module
N and N/P is a direct sum of cyclic modules then N = N/P @ P.

Throughout the lecture today we assume that R is a PID, and M is
a finitely generated module over R.
Definition. For p a prime in R we define M, = {m € torM : Ji, p'm = 0}.

Proposition 1 M, is a direct sum of cyclic modules.

Proof. Let zi,...,z; be a minimum set of generators of M,. We prove the
proposition by induction on k. If £k = 1 then trivially M is cyclic.

Now suppose k > 1. M, /Rx is generated by z2,...,z;. So, by induction it
is a direct sum of cyclic modules. If Rx; is pure then we are done by the lemma,
so we just need to show that Rx; is pure. Let R,» = Anng(x;), in particular
p"ix; = 0. Let n = max{ny,...,n,}. Permuting if necassary, we may assume
without loss of generality that n; = n. Also p"M, = 0 since p" annihilates
each generator. Take y € M,,a € R with ay € Rz;. If ay = 0 then ay = a0,
so the purity condition is satisfied. Suppose ay # 0. Write ay = bx; for some
be R, b#0.

Write a = p¥s,b = p™t,p{s,ptt. Since ged(s,p™) = 1,3r,c € R such that
rs+cp” =1,s0rs=1on My As bz, #0, and bx; = p™tz; we have m < n.
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=p" ltxy £0, as p" ! ¢ Anngr.



Son—m-—-1+k<n,sok<m-+1sok<m. So

ay = pksy = p"txy = pTsrtry, as sr=1

= ap™ Frtxy,

where p™Frtz, € Rxy, as p™ *rt € R. So Rz, is pure. (]

2 Composition Series

Definition. A module is simple if it has no proper nontrivial submodules.
Note. Simple modules are cyclic, as M = 0, or take a # 0,a € M; Ra is a
submodule, so Ra = M.

Note. A simple vector space is a 1-dimensional vector space.

Proposition 2 A nozero module M is simple iff M = R/L when L is a maxi-
mal left ideal of R.

Proof. First assume M is simple, we know that M is cyclic, so M = R/L,
where L is a left ideal. If L is not maximal then take a € R, where the ideal
generated by L and a, L + a, is not R, then L + a gives a proper submodule of
M.

Now assume that M = R/L, where L is a maximal left ideal. Say N is
a proper nontrivial submodule of R/L. Take 0 # a + L € N, then the ideal
generated by L and a properly contains L, so by maximality it must be R. So
there exist [ € L,r € R such that ra+1l=1,sor(a+L)=1+L € N,so N is
not proper. (Il
Definition. Consider a finite descending chain of submodules of M, M = My 2
My D ... D M;. We say the chain has length t. The factors are the M;/M; 1,
and a composition series is a chain with M; = 0 and with all factors simple.
Note.

1. f M =My2 My 2 ... M, is such a chain , and N a submodule of M,
then M/N = My/N 2 M;/N 2 ... 2 M;/N, and by Second Isomorphism
Theorem

Mi—1/p; & Mio1/N /M, /N,
so the factors are isomorphic.

2. If M;—1 2 M; and M;_1/M; is not simple, then there exists N submodule
of M;_1 such that M;_1 2 N 2 M;, this is called refining the chain.

3. If S is a simple submodule of M and N any submodule of M, by Third
Isomorphism Theorem (N + S)/N = S/N NS, which is 0 or S. So if
M= S let My =3"12FS,, then M =My D My D...2 M, 20,
and, discarding duplicates, this is composition series.

Definition. Two chains are equivalent if they are the same length and they
have isomorphic factors up to permutations.



Theorem 1 (Schriever-Jordan-Hdélder) Suppose M has a composition se-
ries, M = Mo 2D My 2 ... 2 M; =0, then

1. Any finite chain of submodules M = Ng 2 N1 2 ... 2 Ni_1 2 0 can be
refined to be equivalent to M = Mo 2 My 2 ... 2 M,;. Consequently

2. Any two composite series of M are equivalent.

3. Let (M) be the length of any composition series of M, then I(M) =
I(N)+ I(M/N) for any N submodule of M, and, in particular, N and
M/N have composition series.

Proof.

1. Let Ny =0, and let N; j = Niy1 + (M; N N;),0 <5 <¢t0<i<k-1.
Each N; ; is a submodule of M. Note that
Ni,O = N;+1 + (M N Nz) = N,, since N;4; C N;
Nit = Nigz1+ (0N N;) = Nijq

So we have

M=Ny2...2N;_1;=N;=N;02 Ny
D...2N; i =Niy1 =Nip102...2 N, =0

Note many quotients will be 0. We can do the same with the roles of M;
and N; swapped. Between

My =M;o2M;12...2 M =M
all quotients are trivial except one which is M; /M1, since M;/M;; is
simple.
Claim. Ni7j/Ni7j+1 = Mj,i/M’,i—i-l' ([l
Proving the claim suffices to prove (1), because then removing terms which

are equal to M; ; sequence is the original composition sequence and the
N, ; is equivalent so it is a refinement satisfying (1).

Proof of Claim. We will prove
Nij/ Ny jp1 & NiDM;[(N;AM; 1) +(NiganM;) =2 My /My .

As the middle term above is symmetric in 4, j, it suffices to prove the
first equivalence. Third Isomorphism Theorem says A+B/B = A/anB. Let
A=N;N Mj,B = Ni7j+1 = Nij+1 + (Mj+1 n Nl), then

A+B= (Nl mMj) + Ni+1 + (Mj+1 N Nz)
= Nit1 + (N; N M;) since Mj 1 C M;
:Ni,j-



And

ANB = (N;NM;)N(N;j41 = Niy1 + (M1 N N;))
e (NiJrl N Mj) + (MjJrl n Nz)

2. Direct consequence of (1).

3. Refine M O N D 0 to a composition series. This givesa composition series
for N (just truncate) and it gives M = My 2 My 2 ... 2 M, = N, then

M/N = My/N 2 Mi/N 2...2 M,/N =N/N =0,
and so the lengths add.
O
Corollary 1 Say N is a submodule of M, [(N) =1(M) < co. Then M = N.

Proof. I(M/N)+1(N)=1(M),so I(M/N)=0,s0 M/N=0,s0o M =N. 0O

Corollary 2 If0 — K I M % N =0 is an exact sequence of modules, then
(M)=UK)+I(N).

Proof. By exactness we have [(K) = I(f(K)). Also, by First Isomorphism
Theorem, and then, by exactness, we have N = M/kerg = M/ f(K), so
UE) +U(N) = I(f(K)) + [(M/f(K)) = [(M).

O
Note. The proof of Jordan-Hoélder Theorem only needs the three isomorphism
theorems, so it holds in any context where they all are true, including groups.



