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1 Finitely Generated Modules over PIDs

Recall the following definition and the lemma from last lecture:
Definition. A submodule N of M is pure if whenever ax ∈ N , with x ∈ M, a ∈
R, then there exists z ∈ N such that az = ax.

Lemma 1 If P = Rx0 is a pure cyclic submodule of a finitely generated module

N and N/P is a direct sum of cyclic modules then N = N/P ⊕ P .

Throughout the lecture today we assume that R is a PID, and M is
a finitely generated module over R.
Definition. For p a prime in R we define Mp = {m ∈ torM : ∃i, pim = 0}.

Proposition 1 Mp is a direct sum of cyclic modules.

Proof. Let x1, . . . , xk be a minimum set of generators of Mp. We prove the
proposition by induction on k. If k = 1 then trivially M is cyclic.

Now suppose k > 1. Mp/Rx1 is generated by x2, . . . , xk. So, by induction it
is a direct sum of cyclic modules. If Rx1 is pure then we are done by the lemma,
so we just need to show that Rx1 is pure. Let Rpni = AnnR(xi), in particular
pnixi = 0. Let n = max{n1, . . . , nk}. Permuting if necassary, we may assume
without loss of generality that n1 = n. Also pnMp = 0 since pn annihilates
each generator. Take y ∈ Mp, a ∈ R with ay ∈ Rx1. If ay = 0 then ay = a0,
so the purity condition is satisfied. Suppose ay 6= 0. Write ay = bx1 for some
b ∈ R, b 6= 0.

Write a = pks, b = pmt, p ∤ s, p ∤ t. Since gcd(s, pn) = 1, ∃r, c ∈ R such that
rs + cpn = 1, so rs = 1 on Mp. As bx1 6= 0, and bx1 = pmtx1 we have m < n.

p

≥0

︷ ︸︸ ︷

n − m − 1ay = pn−m−1+ksy

= pn−1tx1 6= 0, as pn−1 /∈ AnnRx1.
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So n − m − 1 + k < n, so k < m + 1 so k ≤ m. So

ay = pksy = pmtx1 = pmsrtx1, as sr = 1

= apm−krtx1,

where pm−krtx1 ∈ Rx1, as pm−krt ∈ R. So Rx1 is pure. �

2 Composition Series

Definition. A module is simple if it has no proper nontrivial submodules.
Note. Simple modules are cyclic, as M = 0, or take a 6= 0, a ∈ M ; Ra is a
submodule, so Ra = M .
Note. A simple vector space is a 1-dimensional vector space.

Proposition 2 A nozero module M is simple iff M ∼= R/L when L is a maxi-

mal left ideal of R.

Proof. First assume M is simple, we know that M is cyclic, so M ∼= R/L,
where L is a left ideal. If L is not maximal then take a ∈ R, where the ideal
generated by L and a, L + a, is not R, then L + a gives a proper submodule of
M .

Now assume that M ∼= R/L, where L is a maximal left ideal. Say N is
a proper nontrivial submodule of R/L. Take 0 6= a + L ∈ N , then the ideal
generated by L and a properly contains L, so by maximality it must be R. So
there exist l ∈ L, r ∈ R such that ra + l = 1, so r(a + L) = 1 + L ∈ N , so N is
not proper. �

Definition. Consider a finite descending chain of submodules of M , M = M0 )
M1 ) . . . ) Mt. We say the chain has length t. The factors are the Mi/Mi+1,
and a composition series is a chain with Mt = 0 and with all factors simple.
Note.

1. If M = M0 ) M1 ) . . . ) Mt is such a chain , and N a submodule of Mt,
then M/N = M0/N ) M1/N ) . . . ) Mt/N , and by Second Isomorphism
Theorem

Mi−1/Mi
∼= Mi−1/N/Mi/N,

so the factors are isomorphic.

2. If Mi−1 ) Mi and Mi−1/Mi is not simple, then there exists N submodule
of Mi−1 such that Mi−1 ) N ) Mi, this is called refining the chain.

3. If S is a simple submodule of M and N any submodule of M , by Third
Isomorphism Theorem (N + S)/N ∼= S/N ∩ S, which is 0 or S. So if

M =
∑k

i=1 Si, let Mk =
∑t−k

i=1 Si, then M = M0 ⊇ M1 ⊇ . . . ⊇ Mt−1 ⊇ 0,
and, discarding duplicates, this is composition series.

Definition. Two chains are equivalent if they are the same length and they
have isomorphic factors up to permutations.
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Theorem 1 (Schriever-Jordan-Hölder) Suppose M has a composition se-

ries, M = M0 ) M1 ) . . . ) Mt = 0, then

1. Any finite chain of submodules M = N0 ) N1 ) . . . ) Nk−1 ) 0 can be

refined to be equivalent to M = M0 ) M1 ) . . . ) Mt. Consequently

2. Any two composite series of M are equivalent.

3. Let l(M) be the length of any composition series of M , then l(M) =
l(N) + l(M/N) for any N submodule of M , and, in particular, N and

M/N have composition series.

Proof.

1. Let Nk = 0, and let Ni,j = Ni+1 + (Mj ∩ Ni), 0 ≤ j ≤ t, 0 ≤ i ≤ k − 1.
Each Ni,j is a submodule of M . Note that

Ni,0 = Ni+1 + (M ∩ Ni) = Ni, since Ni+1 ⊆ Ni

Ni,t = Ni+1 + (0 ∩ Ni) = Ni+1

So we have

M = N0 ⊇ . . . ⊇Ni−1,t = Ni = Ni,0 ⊇ Ni,1

⊇ . . . ⊇ Ni,t = Ni+1 = Ni+1,0 ⊇ . . . ⊇ Nk = 0

Note many quotients will be 0. We can do the same with the roles of Mi

and Ni swapped. Between

Mi = Mi,0 ⊇ Mi,1 ⊇ . . . ⊇ Mi,k = Mi+1

all quotients are trivial except one which is Mi/Mi+1, since Mi/Mi+1 is
simple.

Claim. Ni,j/Ni,j+1
∼= Mj,i/Mj,i+1. �

Proving the claim suffices to prove (1), because then removing terms which
are equal to Mi,j sequence is the original composition sequence and the
Ni,j is equivalent so it is a refinement satisfying (1).

Proof of Claim. We will prove

Ni,j/Ni,j+1
∼= Ni∩Mj/(Ni∩Mj+1)+(Ni+1∩Mj)

∼= Mj,i/Mj,i+1.

As the middle term above is symmetric in i, j, it suffices to prove the
first equivalence. Third Isomorphism Theorem says A+B/B ∼= A/A∩B. Let
A = Ni ∩ Mj, B = Ni,j+1 = Ni+1 + (Mj+1 ∩ Ni), then

A + B = (Ni ∩ Mj) + Ni+1 + (Mj+1 ∩ Ni)

= Ni+1 + (Ni ∩ Mj) since Mj+1 ⊆ Mj

= Ni,j .
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And

A ∩ B = (Ni ∩ Mj) ∩ (Ni,j+1 = Ni+1 + (Mj+1 ∩ Ni))

= (Ni+1 ∩ Mj) + (Mj+1 ∩ Ni).

�

2. Direct consequence of (1).

3. Refine M ⊇ N ⊇ 0 to a composition series. This givesa composition series
for N (just truncate) and it gives M = M0 ) M1 ) . . . ) Mv = N , then

M/N = M0/N ) M1/N ) . . . ) Mv/N = N/N = 0,

and so the lengths add.

�

Corollary 1 Say N is a submodule of M , l(N) = l(M) < ∞. Then M = N .

Proof. l(M/N) + l(N) = l(M), so l(M/N) = 0, so M/N = 0, so M = N . �

Corollary 2 If 0 → K
f
−→ M

g
−→ N → 0 is an exact sequence of modules, then

l(M) = l(K) + l(N).

Proof. By exactness we have l(K) = l(f(K)). Also, by First Isomorphism
Theorem, and then, by exactness, we have N ∼= M/ ker g = M/f(K), so

l(K) + l(N) = l(f(K)) + l(M/f(K)) = l(M).

�

Note. The proof of Jordan-Hölder Theorem only needs the three isomorphism
theorems, so it holds in any context where they all are true, including groups.
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